Autoware is the open-source software originally founded by the team of Nagayo university in 2015. There are many packages provided for building autonomous vehicle such as localization, detection, prediction, planning, and control.
For the installation, there is step-by-step tutorial about how to install Autoware provided in the Autoware Gitlab (https://gitlab.com/ApexAI/autowareclass2020/-/blob/master/lectures/01_DevelopmentEnvironment/devenv.md). However, since there are lots of huge development in software side, codes and commands embed in Gitlab site are not working as expected. So, this tutorial will provide the guideline to install it through Agile Development Environment (ADE).
Environment: Ubuntu 18.04 LTS
- Install docker on Ubuntu 18.04 LTS https://docs.docker.com/engine/install/ubuntu/
- After finish installation, please check by launching
sudo docker run hello-world
- Install ade by this installation guide.
https://ade-cli.readthedocs.io/en/latest/install.html#requirements - Once finished, start installing Autoware by
mkdir -p ~/adehomecd ~/adehometouch .adehomegit clone https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto.gitcd AutowareAutoexport ADE_DOCKER_RUN_ARGS="--cap-add=SYS_PTRACE --net=host --privileged --add-host ade:127.0.0.1 -e RMW_IMPLEMENTATION=rmw_cyclonedds_cpp"
export ADE_GITLAB=gitlab.com
export ADE_REGISTRY=registry.gitlab.com
export ADE_IMAGES="registry.gitlab.com/autowarefoundation/autoware.auto/autowareauto/ade:master registry.gitlab.com/autowarefoundation/autoware.auto/autowareauto:master registry.gitlab.com/apexai/ade-lgsvl:2020.08-native-bridge"
- Start ade by entering this command
ade start --update
- Enter to ade environment
ade enter
- Download .pcap file by https://drive.google.com/file/d/1vNA009j-tsVVqSeYRCKh_G_tkJQrHvP-/view and put it in
${HOME}/adehome/data
- Launching object detection to check Autoware installation
udpreplay ~/data/route_small_loop_rw-127.0.0.1.pcap -r -1
- Open a new terminal and enter
cd adehome/AutowareAutoade entersource /opt/AutowareAuto/setup.bashrviz2 -d /opt/AutowareAuto/share/autoware_auto_examples/rviz2/autoware_perception_stack.rviz
- Open a new terminal and enter
cd adehome/AutowareAutoade entersource /opt/AutowareAuto/setup.bashros2 run velodyne_node velodyne_cloud_node_exe --model vlp16 __ns:=/lidar_front __params:=/opt/AutowareAuto/share/velodyne_node/param/vlp16_test.param.yaml
- Open a new terminal and enter
cd adehome/AutowareAutoade entersource /opt/AutowareAuto/setup.bashros2 run robot_state_publisher robot_state_publisher /opt/AutowareAuto/share/lexus_rx_450h_description/urdf/lexus_rx_450h_pcap.urdf Initialize urdf model from file: /opt/AutowareAuto/share/lexus_rx_450h_description/urdf/lexus_rx_450h_pcap.urdf
- Open a new terminal and enter
cd adehome/AutowareAutoade entersource /opt/AutowareAuto/setup.bashros2 run point_cloud_filter_transform_nodes point_cloud_filter_transform_node_exe __ns:=/lidar_front __params:=/opt/AutowareAuto/share/point_cloud_filter_transform_nodes/param/vlp16_sim_lexus_filter_transform.param.yaml __node:=filter_transform_vlp16_front --remap points_in:=/lidar_front/points_raw
- Open a new terminal and enter
cd adehome/AutowareAutoade entersource /opt/AutowareAuto/setup.bashros2 run ray_ground_classifier_nodes ray_ground_classifier_cloud_node_exe __params:=/opt/AutowareAuto/share/ray_ground_classifier_nodes/param/vlp16_lexus.param.yaml --remap points_in:=/lidar_front/points_filtered
- Open a new terminal and enter
cd adehome/AutowareAutoade entersource /opt/AutowareAuto/setup.bashros2 run euclidean_cluster_nodes euclidean_cluster_node_exe __params:=/opt/AutowareAuto/share/euclidean_cluster_nodes/param/vlp16_lexus_cluster.param.yaml --remap points_in:=/points_nonground
- In Rviz, it will show like this picture below.
Source: